

Patcham is a global producer of Metal-based Catalysts and Performance Additives for Paints, Coatings, Plastics and the oil industry

METAL-BASED CATALYSTS FOR POLYURETHANES AND POLYISOCYANURATES

Metal-based Catalysts for Polyurethanes (PU) and Polyisocyanurates (PIR)

General Information

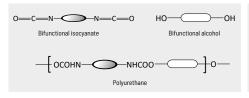
POLYURETHANE INDUSTRY								
Foam CASE)	
Insulation Cushioning			0	Adhe	Seal	Elastomers	the	
Rigid	Flexible	Coatings	sives	ants	MUE's	S		

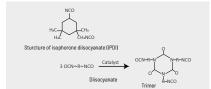
There are a few chemical reactions that occur in the formation of Polyurethane (PU) and Polyisocyanurate (PIR) to produce an array of Polyurethane products and catalysts are required:

Blow Reaction

Usually the initiating reaction.

Produces CO₂ gas often utilized in foams.


Gel reaction


This is the chemical urethane formation reaction.

Trimerization

This is an isocyanate polymerization reaction required for production of PIR.

Reaction					
NCO/H₂O	BLOW REACTION				
Iscoyanate / Water	DLOW REACTION				
NCO/OH	Urethane				
Iscoyanate / polyol	GEL REACTION				
NCO/NCO	Polymerization				
Iscoyanate / Iscoyanate	TRIMERIZATION				

These reactions occur readily at temperatures above 110°C. However, at ambient temperature, without a catalyst, they are usually too slow.

Catalysts tend to catalyze several of these reactions at once, although to differing degrees. A mix of catalysts is often required to achieve a critical balance between these reactions for the desired processing and end-product properties. Catalysts are usually designated according to the reaction they have the most influence upon.

Polyurethane and Polyisocyanurate catalysts fall into two categories:

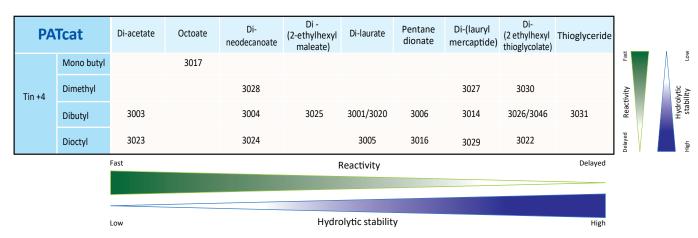
Tertiary Amines and Metal-based Catalysts

	Tertiary Amines	Metal-based Catalysts
BLOW REACTION	Strong	Weak
GEL REACTION	Strong	Strong
Polymerization TRIMERIZATION	Strong	Strong

Sustainability is a consideration in catalyst selection.

Many Tertiary Amines have one or more of these detriments:

Bad smell
Corrosive
VOC - Toxicity issues
Instability with acid treated pigments
Deactivation of HFO blowing agents
Low Flash Point - End product discoloration


Catalyst deactivation can be a function of water content in the PU system and thus hydrolytic stability of the catalyst is also an important formulating consideration.

Tin containing catalysts are utilized in the production of several polymers, including Polyurethanes.

	Dibutyl Tin	Metal content
PATcat 3003	Dibutyltin diacetate	33.0%
PATcat 3004	Dibutyltin dineodecanoate	20.0%
PATcat 3001	Dibutyltin dilaurate	18.0%
PATcat 3020	Dibutyltin dilaurate (lower crystallization temperature)	18.0%
PATcat 3018WB	Dibutyltin dilaurate	1.8%
PATcat 3014	Dibutyltin lauryl mercaptide	18.0%
PATcat 3026	Dibutyltin di (2-ethylhexyl thioglycolate)	18.0%
PATcat 3046	Dibutyltin di (2-ethylhexyl thioglycolate)	2.0%
PATcat 3025	Dibutyltin di (2- ethylhexyl maleate)	17.0%
PATcat 3006	Dibutyltin acetyl acetonate	27.0%
PATcat 3031	Dibutyltin thioglyceride	26.5%

Monobutyl Tin							
PATcat 3017	Monobutyltin trioctoate	19.0%					
	Dimethyl Tin						
PATcat 3028	Dimethyltin dineodecanoate	23.5%					
PATcat 3027	Dimethyltin dilauryl mercaptide	20.5%					
PATcat 3030	PATcat 3030 Dimethyltin di (2-ethylhexyl thioglycolate)						
Dioctyl Tin							
PATcat 3024	Dioctyltin dineodecanoate	17.0%					
PATcat 3005	Dioctyltin dilaurate	16.0%					
PATcat 3022	Dioctyltin di (2-ethylhexyl thioglycolate)	15.0%					
PATcat 3023	Dioctyltin diacetate	26.0%					
PATcat 3029	Dioctyltin di (lauryl mercaptide)	15.5%					
PATcat 3016	Dioctyltin acetyl acetonate	21.0%					

Tin based gel catalysts cover a rage of activity from Fast Acting to Delayed Action and varying degrees of hydrolytic stability.

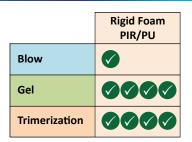
Generally Tin catalysts that demonstrate a degree of delayed action tend to also demonstrate better hydrolytic stability. Several Tin catalysts have freezing points >5C which creates a handling concern. Tin catalyst on the whole show evidence of toxicity.

Standard Tin-free Catalysts

PATcat Stan	Metal content				
PATcat 4007	20.0%				
PATcat 4001	Bismuth Neodecanoate	16.5%			
PATcat 4036	3.6%				
PATcat 4005 Bismuth Octoate		24.0%			
PATcat 4006	28.0%				
PATcat 4016	Bismuth Neodecanoate	8.0%			
PAICAL 4016	Zinc Neodecanoate	Ω ∩0/			

PATcat Enhanced Bismuth Catalysts				
Improved hydrolytic Stability				
Typical dosage based on polyol				
PATcat 4009 1.00%				
PATcat 4012 0.50%				
PATcat 4020 0.75%				
PATcat 4031 1.50%				

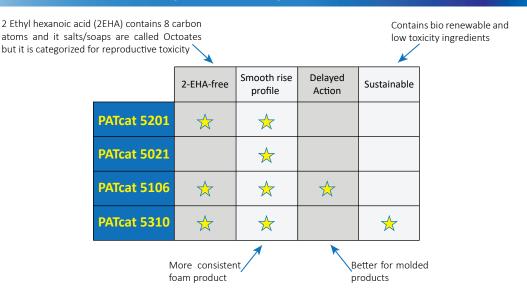
PATca	Metal content	
PATcat 9003	Zinc Neodecanoate	19.0%
PATcat 9001 Zinc Octoate		23.0%
PATcat 9002 Zinc Octoate		18.0%
PATcat 9005	Zinc Octoate	20.0%
PATcat 9009	Zinc Acetylacetonate	2.0%


Bismuth catalysts are fast acting and also tend to require higher dosage compared to Tin catalysts. Zinc catalysts tend to demonstrate a slight delay in the gel reaction compared to Tin and Bismuth.

PIR/PU Polyisocyanurate Rigid Foam

Isocyanate polymerization, particularly Trimerization, is essential in this class of polyurethanes.

Trimerization is normally the slowest of the isocyanate reactions and requires catalysts to increase the rate of production and yield of trimerized material:


PATcat 5000 series Potassium based trimerization catalysts can be used as the sole catalyst in PIR/PU systems.

Variations in system formulations and production equipment place different demands on the catalyst such as viscosity, OH value and water content:

Metal	Anion	Carrier Diluent	Catalyst strength Metal content %wt/wt	Water content	Typical OH value	Typical viscosity (Cp) at 25°C	PATcat
			15.0	5.0% max	525	3500	5001
		DEG	15.0	3.5% max	460	7000	5003
	Octoate		10.0	2.0% - 4.0%	700	1200	5011
		MEG	15.3	3.0% - 4.0%	660	3500	5016
		IVILO	15.0	9.5% - 10.5%	965	550	5012
Ę	Acetate	DEG	15.0	5.5% max	910	350	5005
Potassium			13.2	2.0% max	815	350	5008
			10.0	5.5% max	1060	150	5004
			18.0	3.0% - 4.0%	1130	200	5018
			15.3	1.0% max	1100	150	5019
		MEG	15.0	3.0% - 5.0%	1290	75	5007
			13.0	2.7% - 3.5%	1340	100	5013
			10.0	3.0% - 5.0%	1530	50	5006
	Neodecanoate	DEG	10.0	3.0% - 5.0%	700	3500	5010
	Propionate	MEG	14.0	4.0% - 5.0%	980	120	5020

Special and Hybrid Potassium Trimerization Catalysts

Catalysts for Soft and High resilience Polyurethane Foams

Soft foams are predominantly water blown and require strong blow reaction catalysts.

A balance is required between the blow and gel reaction to minimize foam defects.

Patcham provides tertiary amine-free and tin-free catalyst options.

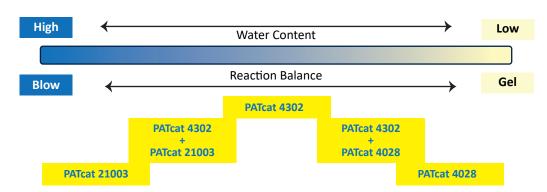
	Soft Foam
Blow	0000
Gel	0000
Trimerization	

Most soft and high resilience foams are made with combinations of tertiary amines and stannous octoate in a One-Shot process. Tertiary Amines and Stannous Octoate, although quite effective, are poor options for sustainability as well as ease of use.

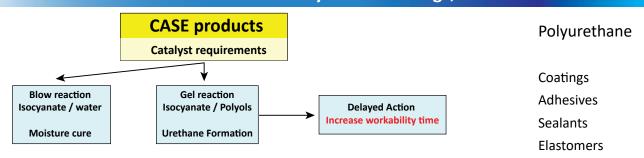
Tin-free Stannous Octoate replacement PATcat 4205

PU Foam 2lbs/ft3 30kg/m3

Std PATcat 4205 Polyether Polyol, 3000 MW 100.00 100.00 Dabco 33LV, Blow amine 0.30 0.30 1.10 1.10 Silicon surfactant 4.50 4.50 0.40 TDI (at Index 114) 59 59 17 Cream time (sec) 18 67 69 123 125 Foam height (cm) Density (kg/m³)

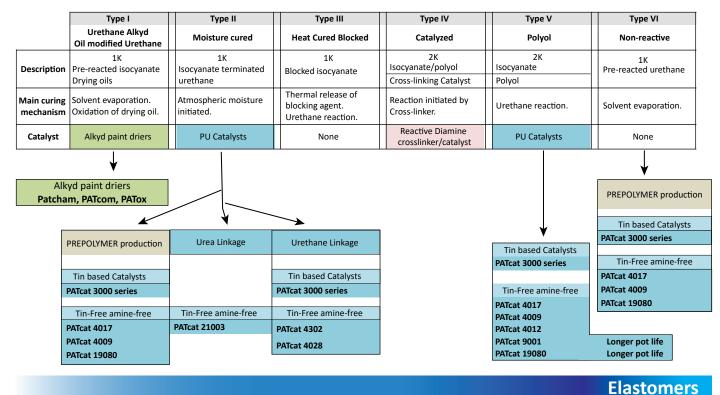


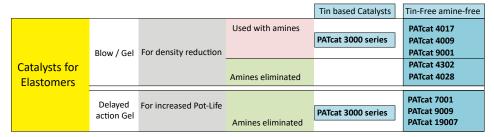
HR Foam


Tin-free, Amine-free Catalysts for Soft Foam and HR Foam

For low density foams with minimum defects an optimal balance is required between the Blow and Gel reactions.

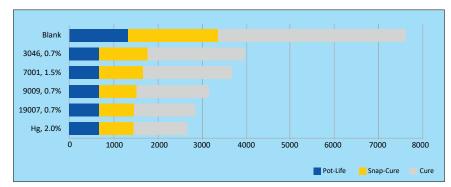
Tin-free catalysts for Spray Foams		Used in co ami			
		Bismuth	Bismuth / zinc	Hydrolytically stable Bismuth	Tin-free / Amine free
	PATcat	4017	4009	4012	4302 21003 4028

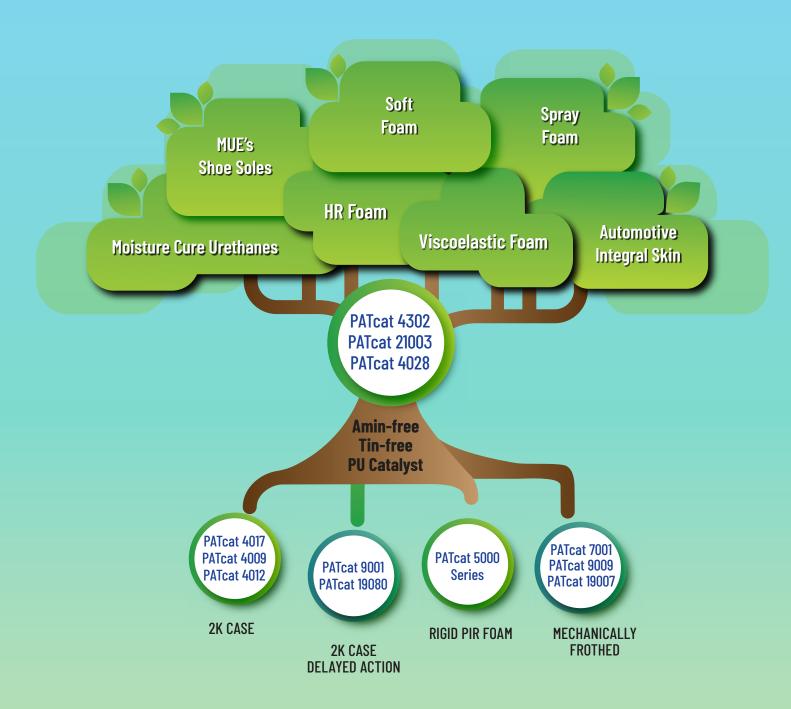

Catalysts for Coatings, Adhesives and Sealants


Coatings, adhesives and sealants

There are a variety of urethane and hybrid urethane coatings, adhesives and sealants most of which require catalysts for either production of resin intermediates or the final curing process.

ASTM Classification


Elastomers are 2K Polyurethane systems. The polyol component is mixed with the isocyanate component just prior to application.


Comparison of Delayed action gel catalysts

These are often requested as "Mercury Replacement catalysts.

Hg (Mercury) is included for reference only.

Amine and Tin-free Catalysts for Urethanes

Urethane systems can be formulated without using Tertiary amine or tin catalysts.

Patcham produces a line of Tertiary Amine-free Tin-free catalysts that can balance the Blow, Gel and Trimerization reactions required to produce Urethanes Systems

Terminate dependance upon smelly, toxic, VOC Polyurethane catalysts

PATCHAM (FZC)

P.O. Box: 7753, SAIF Zone, Sharjah, UAE

Tel.: +971 65570035 Fax: +971 65570038 Email: patcham@eim.ae

PATCHAM USA LLC

10 Commerce Road Fairfield, New Jersey - 07004

Tel.: (201) 293 4282 Fax: (201) 820 0818

Email: officeadmin@patchamusa.com

PATCHAM INDIA

B-52, Pravasi Industrial Estate, Vishweshwar Nagar, Off Aarey Road, Goregoan (E) Mumbai-400 063

Tel.: +91 96191 50550

